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Sound transmission through a double-walled cylindrical shell is studied. The solution that
describes the system response is obtained by combining the solutions of two di!erent models
of the system. The "rst model, which describes the sound transmission due to the interaction
between the acoustic waves and the bending waves in the shells, is formulated by three
acoustic wave equations and two shell vibration equations. The second model describes the
sound transmission by one-dimensional waves propagating through the layers of the shells
and the air-gap. The transmission losses calculated from the two models are combined to
represent the system response in the entire frequency range. Analytical solutions are
compared to corresponding measured results, which shows reasonable agreements if the
extent of the simpli"cations used in the analytical model is considered. The e!ects of
important design parameters such as the air-gap size and the thickness ratio are studied
using analytical solutions.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Double-walled #at or curved panels are found in many applications because they are
e!ective sound barriers that can increase the transmission loss (TL) over the equivalent
single-wall construction. Problems of sound transmission through panels of single or
double walls and sandwich panels have been investigated by many researchers, which are
mostly analytical e!orts [1}12]. White [12] compared the analytical result with the
experimental measurement for a "nite cylindrical single-walled shell for very limited cases.
In the authors' previous work [13], the sound transmission through a single-wall cylindrical
shell was studied. In the work, an exact solution was obtained in a series form using
a classical shell vibration equation without ignoring any of the three directions of shell
motions.

The desire to obtain design rules of thin, double-wall shells used as the side surface of
high-end automotive mu%ers served as the practical motivation for this work. In such
applications, two thin plates are combined by spot welding, and rolled into a circular or
elliptical cylinder shape. Some simpli"cations of the problem are made so that it can be
solved exactly. First, the length of the system is assumed to be in"nite, which eliminates the
need to consider the e!ect of the boundary conditions at the end of the shell. Second, the
incident acoustic wave is assumed to be a plane wave. Finally, an anechoic condition is
assumed in the interior cavity. The "rst and second simpli"cations reduce the problem is
consideration to a two-dimensional (2-D) problem, as it will be explained. The second and
022-460X/02/140631#19 $35.00/0 � 2002 Elsevier Science Ltd.
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third idealizations make the model a rough reciprocal of a mu%er tested in an anechoic
chamber, which has an anechoic condition outside and a di!usive "eld inside.

Two di!erent system models are combined to obtain the transmission loss (TL) of the
system. The "rst model is used to calculate the sound transmission due to the transverse
bending waves in the shells and the acoustic waves. In this model, the system equation is
composed of two sets of shell vibration equations and three acoustic wave equations for the
external, gap and internal spaces. The exact solution to these equations is obtained in series
forms, and represented in terms of TL. The second model is used to calculate the sound
transmission caused by the compression/rarefaction waves in the shell and the acoustic
space, in which the shells are treated like #uid. The model is described by a one-dimensional
(1-D) wave propagating through three layers of acoustic media, two shell layers and one
air-gap layer. It is found that the TL from the 1-D model is lower than the TL from the 2-D
model in the low-frequency range, and vice versa in the high-frequency range. Considering
the de"nition of the TL (lower TL means higher transmitted sound), it is easily realized that
the lower TL curve should be taken to represent the system response. Therefore, the system
TL is obtained by combining TL curves from the 1-D and 2-D models. This superposition
concept is introduced for the "rst time in this work.

Sound transmissions through single and double shells are measured experimentally, to
which the theoretical solutions are compared. Single- and double-walled shells used in the
experiment had the same dimensions and properties as the theoretical model except their
"nite lengths. Thick end caps were used to close both ends of the cylinders to eliminate the
e!ect of the sound radiated from the end plates. TLs are measured in an anechoic chamber,
once with the sound source located inside the cylinder and the other time with the sound
source located outside the cylinder. If the reciprocity is considered, it is realized that these
set-ups are rough equivalents to each other. The main purpose of the experimental
comparison is to con"rm that the formulation and computation procedure of the problem
are free of fundamental errors, which is always a possibility in a numerical model without
experimental validation. Utilizing the advantage of having a theoretical procedure
validated experimentally, the e!ect of important parameters such as thickness ratio and the
size of the air-gap are studied.

2. ANALYTICAL SOLUTION PROCEDURE

2.1. SOUND TRANSMISSION BY BENDING WAVES IN SHELLS

Figure 1 shows a schematic of two concentric cylindrical shells of in"nite length.R
�
, R

�
, h

�
and h

�
indicate the radii and thickness of the shells, in which the subscripts i and e represent

the inner and outer shells in general. As shown in the "gure, a plane wave is incident with an
angle � and re#ected by the external surface of the cylinder. Only the transmitted wave is
considered in the internal cavity. The re#ected waves are ignored in the internal cavity to
make the model approximate the reciprocal of a mu%er tested in an anechoic chamber,
which has the incident and re#ected waves internally and only transmitted waves externally.

2.1.1. Formulation of the governing equations

The #uid media in the external, in-between, and the internal space are de"ned by the
density and the speed of sound: ��

�
, c

�
�, ��

�
, c

�
� and ��

�
, c

�
� respectively. Properties of the

shells are de"ned by the density, Young's modulus, and the Poisson ratio: ��
�
, E

�
, �

�
�,

��
�
, E

�
, �

�
�. The incoming noise is idealized as a plane wave p� travelling in the x}z plane

incident with an angle �
�
as shown in the "gure.



Figure 1. Schematic description of the problem: 2-D model.
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The acoustic pressure in the external space p
�
"p�#p�

�
, where p� is the incident wave

and p�
�
is the re#ected wave, satis"es the wave equation [14]

c
�
� �(p�#p�

�
)#

�� (p�#p�
�
)

�t�
"0, (1)

where � � is the Laplacian operator. In the annular space between the shells, the pressure is
p
�
"p�

�
#p�

�
, where p�

�
is the transmitted wave through the external shell and p�

�
is the

re#ected wave from the internal shell, which satis"es the acoustic wave equation

c
�
� � (p�

�
#p�

�
)#

�� (p�
�
#p�

�
)

�t�
"0. (2)

An anechoic condition is assumed in the internal cavity, therefore p
�
"p�

�
, which satis"es

c
�
� �p�

�
#

��p�
�

�t�
"0. (3)
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Love's equations, classical thin-shell equations, are used to describe the motions of the two
shells [15]. Equations of motion in the axial, radial and circumferential directions of the
inner shell are

¸
�
�u�

�
, v�

�
, w�

�
�"�

�
h
�
uK �
�
, ¸

�
�u�

�
, v�

�
, w�

�
�"�

�
h
�
vK �
�
, (4, 5)
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�
h
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�
, (6)

where ¸
�
, ¸

�
and ¸

�
are di!erential operators which can be found in reference [15],

�u�
�
, v�

�
, w�

�
�, i"1, 2, represent the displacements of the shell of a point on the neutral surface

in the axial, circumferential, radial directions, where the subscripts 1 and 2 denote the
variables associated with the inner shell and the outer shell.

For the outer shell, equations of motion in the direction of the axial, radial and
circumferential directions are
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�
, ¸

�
�u�

�
, v�

�
, w�

�
�"�

�
h
�
vK �
�
, (7, 8)
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�
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�
. (9)

At the interfaces between the shells and air, the following equations must be satis"ed:

� (p�#p�
�
)
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�

�t�
at r"R

�
,
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�
#p�
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)

�r
"!�

�

��w
�

�t�
at r"R

�
, (10, 11)
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)

�r
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��w
�
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�
,

�p�
�

�r
"!�

�

��w
�

�t�
at r"R

�
. (12, 13)

2.1.2. Solution procedure

The solution to equations (1)}(9) that satis"es four boundary conditions in equations
(10)}(13) can be obtained using the mode superposition method. The harmonic, plane
incident wave p� can be expressed in the cylindrical co-ordinates as [16]

p�(r, z, �, t)"p
�

�
�
���

	
�
(!j )�J

�
(k

��
r) cos[n�]e�����	�

	, (14)

where p
�
is the amplitude of the incident wave, n indicates the circumferential mode number,

	
�
"1 for n"0 and 2 for n"1, 2, 32, j"�!1, J

�
is the Bessel function of the "rst kind

of order n, and 
 is the angular frequency. Also, wave numbers in equation (14) are de"ned
as

k
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), (15)
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Owing to the circular cylindrical geometry, the pressures p�
�
, p�

�
, p�

�
and p�

�
are expanded

as
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	, (21)

where H�
�
and H�

�
are Hankel functions of the "rst and second kinds of order n. Note that

the expressions satisfy the wave equations (1)}(3) and the directions of the travelling waves
automatically.

Since the trace velocities of all travelling waves have to be the same, shell displacements
can be expressed as

w�
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v�
�
(z, �, t)"

�
�
���

v�
��

sin[n�]e�����	�

	, w�
�
(z, �, t)"

�
�
���

w�
��

cos[n�]e�����	�

	, (24, 25)

u�
�
(z, �, t)"

�
�
���

u�
��

cos[n�]e�����	�

	, v�
�
(z, �, t)"

�
�
���

v�
��

sin[n�]e�����	�

	, (26, 27)

Reference [15] explains the choice of the displacement functions for the in-plane
displacements u and v in relation to those for w in the cylindrical shell.

Substituting the expressions in equations (18)}(27) in to six shell equations (equations
(4)}(9)) and four boundary conditions (equations (10)} (13)) provides 10 equations. These
equations can be used to solve for 10 unknowns: p�

�
, p�

�
, p�

�
, p�

�
, u�

�
, v�

�
, w�

�
, u�

�
, v�

�
and w�

�
in

terms of the amplitude of the incident wave p
�
. Six shell vibration equations are
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In the above equations, the membrane sti!ness and bending sti!nessK andD are de"ned as
follows [15]:
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Four equations from the boundary conditions are
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Equations (28)}(39) constitute 10 equations for 10 unknowns, which can be put into
a matrix equation:
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The 10 unknown coe$cients p�
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��
and w�

��
are obtained in

terms of p
�
by solving equation (40) using Cramer's rule [17]. These can be substituted back

into equations (18)}(27) to "nd the displacements of the shell and the acoustic pressures in
series forms.

2.1.3. Solution in terms of the transmission loss (¹¸)

The sound power transmitted to the interior cavity per unit length of the shell is

=�"

�
�
���

1

2
Re�p�

��
�/�t(w�

��
)*���

��

�

cos� n�R
�
d�

"

�
�
���

�R
�

2	
�

�Re�p�
��

�/�t(w�
��
)*�, (41)

where Re�)� and the superscript * represent the real part and the complex conjugate of the
argument, 	

�
"1 for n"0 and 	

�
"2 for n"1, 2, 3,2. Substitution of equations (21) and



TABLE 1

Parameters to calculate ¹¸s of the double shell at the mu%er condition

Outside air Outer shell Air-gap Inner shell Inside air

Temperature (3C) 20 * 70 * 103
Density (kg/m�) �

�
1)21 �

�
7750 �

�
1)03 �

�
7750 �

�
0)94

Speed of sound
(m/s)

c
�

343 c
�

6100 c
�

371 c
�

6100 c
�

389
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(22) for p�
�
and w�

�
into equation (41) yields an expression for=�:

=�"

�
�
���

�R
�

2	
�

�Re�p�
��

�H�
�
(k

��
R

�
)( j
w�

��
)*�. (42)

¹¸ is de"ned by

¹¸"!10 log
��

=�
�
=�

, (43)

where=� is the incident power per unit length of the shell in the axial direction

=�"
cos(�

�
)p�

�
�
�
c
�

�2R
�
. (44)

Thus, an exact expression for ¹¸ can be obtained by substituting equations (42) and (44)
into equation (43) as follows:

¹¸"!10 log
��

�
�
���

Re�p�
��

�H�
�
(k

��
R

�
)�(j
w�

��
)*���

�
c
�
��R

�
4	

�
R

�
cos(�

�
)p�

�

. (45)

The ¹¸ curves of single-walled and double-walled shells calculated in this manner are
shown in Figure 3. The geometry of the shells used in the calculation are R

�
"0)1 m,

R
�
"0)09949 m, h

�
"0)6 mm, h

�
"0)4 mm, h

�
"0)01 mm, for the double-walled shell, and

0)1 m radius and 1 mm thickness for the single-walled shell. The material of the shells is
steel, whose Young's modulus and the Poisson ratio are E"1)9�10�� Pa, and �"0)3. The
temperature of the interior cavity is taken as 1033C, which is a typical operating condition
of the automative mu%er. The incident angle of 453 is used for the "gures. Parameters used
in the calculation to obtain Figure 3 are listed in Table 1 for the double-shell case, from
which parameters for the single-shell case can also be obtained by ignoring the parameters
corresponding to one of the shells and the air-gap. The condition in Table 1 is referred to as
the mu/er condition.

2.2. SOUND TRANSMISSION ANALYSIS BY PLANE WAVE MODEL

In this case, the problem is idealized as a 1-D wave propagation problem as shown in
Figure 2.



Figure 2. Schematic description of the problem: 1-D model.
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The four-pole method can be used conveniently for this type of analysis [18]. The
four-pole equation between the system's input and output variables are

�
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�
v
�
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�
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j

r
�
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�
l
�

cos k
�
l
� � �p�v�� ,

(46)

where p and v are the acoustic pressure and particle velocities, k, r and l indicate the complex
wave number, characteristic impedance, the thickness of each layer respectively. Subscripts
A, B and C refer parameters corresponding to the outer shell, the air-gap and the inner shell
respectively. On multiplying matrices in equation (46), the system equation is contained as

�
p
�
v
�
�"�

A
��

A
��

A
��

A
��
� �

1

1

r
�
� p� . (47)

Since the total particle velocity and pressure v
�
and p

�
can be expressed as

v
�
"v

�
!v

�
"

p
�
!p

�
r
�

"�
A

��
r
�

#A
��� p� , (48)

therefore

p
�
!p

�
"r

�
v
�
"r

��
A

��
r
�

#A
��� p� . (49)

Also

p
�
"p

�
#p

�
"�

A
��
r
�

#A
��� p� . (50)

From equations (49) and (50), the incident pressure p
�
and the re#ective pressure p

�
can be

separated, and the re#ection coe$cient R can be obtained as

R"

p
�
p
�

"

A
��
/r

�
#A

��
!r

�
/r

�
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��
!r

�
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��
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��
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�
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��
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�
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�
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��
#r

�
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��

. (51)



Figure 3. ¹¸s calculated from 2-D model at mu%er condition: - - - - -, single shell (R"0)1 m, h"1)0 mm);**,
double shell (R

�
:R

�
"0)1 m, h

�
"0)6 mm, h

�
"0)4 mm).
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Since the cross-sectional area of the input and output side of the system are the same in this
case, the power transmission coe$cient becomes

¹�"1!
R
�. (52)

Finally, the transmission loss can be estimated from the power transmission coe$cient:

¹¸ (dB)"10 log
��

1

¹�
. (53)

The ¹¸ curves calculated by this 1-D model are shown in Figure 4 for the same system at
the same condition used to obtain Figure 3.

2.3. COMBINED SOLUTIONS

The ¹¸ curves in Figures 3 and 4 can be combined to represent the system response in
the entire frequency range. Considering that lower ¹¸ means higher transmitted noise, the
rule to combine two ¹¸ curves should be picking up the lower ¹¸ at each frequency.
Figure 5 shows the ¹¸ curves of the single shell and the double shell obtained by combining
the curves in Figures 3 and 4. These combined ¹¸s are used for comparisons of the the
analytical results and the experimental results.

3. COMPARISON WITH EXPERIMENTAL RESULTS

3.1. MEASUREMENT SET-UP

Figure 6 shows the experimental set-up to measure ¹¸s of the shells in an anechoic
chamber. The single shell is shown, which has the same appearance as the double shell.
A pair of microphones shown in the "gure is used to measure the sound intensity on the



Figure 4. ¹¸s calculated from 1-D model at mu%er condition: - - - - -, single shell (h"1)0 mm); **, double
shell (h

�
"0)6 mm, h

�
"0)4 mm).

Figure 5. Combined ¹¸s from Figures 3 and 4: - - - - -, single shell; **, double shell.

Figure 6. Experimental set-up of ¹¸ measurement.
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TABLE 2

Parameters to calculate ¹¸s of the double shell at the test condition

Outside air Outer shell Air-gap Inner shell Inside air

Temperature (3C) 20 * 20 * 20
Density (kg/m�) �

�
1)21 �

�
7750 �

�
1)21 �

�
7750 �

�
1)21

Speed of sound
(m/s)

c
�

343 c
�

6100 c
�

343 c
�

6100 c
�

343
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external surface. One more pair of microphones is located at the same position on the
internal surface of the shell to measure the sound intensity on the internal surface.

The geometry of the shells used in the experiment is that, with reference to Figure 1,
R

�
"0)1 m, R

�
"0)09 m, h

�
"1 mm, h

�
"1 mm, h

�
"1 mm, for the doubles shell, and 0)1 m

radius and 1 mm thickness for the single-walled shell. The shells were made of steel, which
has the Young's modulus E"1)9�10�� Pa and the Poisson ratio �"0)3. The temperature
was 203C throughout the entire system during the measurements. The parameters
corresponding to this condition are listed in Table 2 for the double-shell case, from which
parameters for the single shell can be easily obtained. The condition de"ned by Table 2 is
referred to as the test condition. Obviously, the parameters at the test condition were as
used in the simulations that were compared to the measurements in Figures 7(a}c)
and 8(a}c).

For both shells, the measurement was conducted once using an internal sound source,
and the other time using an external source. The internal source was a 3-in speaker and the
external source was a B&K (Type 4296) decahedral speaker. A white noise with the
maximum frequency of 6400 Hz was used to drive the sound sources. The frequency
resolution of the measurement was 16 Hz.

The internal sound source set-up represents the theoretical model better because it has an
anechoic condition externally and reverberant condition internally. This set-up is a rough
reciprocal of the theoretical model. The external sound source set-up has incident as well as
re#ected waves both internally and externally.

3.2. SINGLE SHELL MEASUREMENT

The analytical solutions of the sound transmission through the single shell can be
obtained by ignoring the equations corresponding to one of the shells and the annular
space. Figures 7(a, b) compare the measured and calculated ¹¸s of the single shell. The
calculation was carried out using the test condition (see Table 2 for parameters). The
incident angle of 703 was used in the calculation, which was estimated based on the relative
location between the sound source and the intensity probes. Figure 7(a) is the comparison of
the calculation and the test with the source inside and Figure 7(b) is the comparison of the
calculation and the test with the source outside.

The "gures show that the calculated ¹¸ curves agree reasonably with the measured ¹¸

curves if the di!erences between the experimental and theoretical models are considered. It
is believed that the measured ¹¸ in Figure 7(a) has weaker frequency components in the
low frequency range as compared to that in Figure 7(b) because of the limitation of the
performance of the 3-in speaker used for the former. On the other hand, the former has
stronger frequency components than the latter in the high frequency range, which is



Figure 7. Calculated ¹¸ compared with measured ¹¸. (a) Single shell, inside source, **, calculated; - - - - -,
measured. (b) Single shell, outside source, **, calculated; - - - - -, measured. (c) Single shell, ¹¸ averaged for
random incident angles (line legends).
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believed to be the e!ect of the stronger direct "eld of the internal source set-up used in the
former. The analytical ¹¸ curve generally falls between the two measured ¹¸ curves.

The calculated ¹¸ obviously depends on the choice of the incident angle in the analysis.
This dependency can be removed by averaging ¹¸ over all possible incident angles.
According to the Paris formula [19, 20], the average power transmission coe$cient �� is
given as

�� "2 �
��

�

�(�) sin � cos � d�, (54)

where �(�) is the power transmission coe$cient calculated for the incident angle �, and �
�
is

the maximum incident angle, which is chosen as 803 according to the suggestion by
Mulholland et al. [9]. Then, the average ¹¸ is obtained as

¹¸
���

"10 log
1

��
. (55)

The integration in equation (54) is conducted numerically by Simpson's rule using an
integration step-size of 23. Figure 7(c) compares ¹¸

���
to the two measured ¹¸s in a third
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octave format, which shows that the ¹¸
���

lies between the twomeasured ¹¸ curves. Bigger
di!erences between the curves in the low-frequency range may be attributed to the e!ect of
the boundary condition, a major di!erence between the experimental and theoretical
models, which becomes more signi"cant in low-frequency modes.

3.3. DOUBLE SHELL MEASUREMENT

Figures 8(a, b) show comparisons between the calculated and measured ¹¸ curves of the
double-walled shell. Trends similar to the single-shell case are found in the double-shell
case. Figure 8(c) compares to two measured ¹¸ curves and ¹¸

���
curve using a third octave

band format for the double-walled shell.

4. PARAMETER STUDIES

E!ects of design parameters and system parameters are studied analytically in terms of
their e!ects on the ¹¸. The simulations for the parameter studies are made at the mu/er
condition (see Table 1).
Figure 8. (a) Calculated ¹¸ compared with measured ¹¸ using inside source, double shell (R
�
:R

�
"0)1 m,

h
�
"h

�
"1)0 mm): **, calculated; - - - - -, measured. (b) Calculated ¹¸ compared with measured ¹¸ using

outside source, double shell (R
�
:R

�
"0)1 m, h

�
"h

�
"1)0 mm): **, calculated; - - - - -, measured. (c) Averaged

¹¸s compared with measured ¹¸s, double shell.



Figure 9. E!ect of the incidence angle in ¹¸s of the double shell (R
�
:R

�
"0)1 m, h

�
"0)6 mm, h

�
"0)4 mm):

- - - - -, 303; } ) } ) } ) , 403; **, 603.
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4.1. CHOICE OF INCIDENT ANGLE IN ANALYSIS

The averaging process in equation (54) is very time consuming, which becomes a problem
in design iterations, in which the ¹¸s have to be calculated numerous times. Therefore, the
e!ect of the choice of the incident angle is studied to see if the calculation using only one
angle can be used for relative comparison purposes. Figure 9 compares the ¹¸s obtained
for the incident angles of 30, 45 and 603. Notice that the ¹¸s in parameter studies shown in
Figures 9, 10 and 11 were obtained using only the 2-D model. It is known that the general
trend of the ¹¸ curves remains the same, although the curves become di!erent as di!erent
incident angles are used. Therefore, the incident angle of 453 is chosen for parameter studies
later in this work.

4.2. EFFECT OF THE DOUBLE-WALL CONSTRUCTION

Figures 3 and 5 compare the ¹¸s of the single shell of 1 mm thickness and the double
shell composed of 0)6 mm walls 0)4 mm apart by a very air-gap (0)01 mm). Since the total
thickness of the shells is the same, the comparison shows the e!ect of the double shell design.
From Figures 3 and 5, it is known that the double-wall structure does not help in increasing
the ¹¸ in the frequency range lower than the coincidence frequency (about 5500 Hz in this
case). It will be shown later that the double-wall construction provides better noise
insulation as the air-gap size increases, therefore a double-wall construction with large
air-gap has an advantage as an acoustic barrier. A large air-gap design in mu%ers is not
available because the double-wall is made by spot welding, which leaves a very small
air-gap. Figure 10 compares the ¹¸s of the single shell of 1 mm thickness and the double
shell of two 1 mm walls. In this case, the double shell provides better sound insulation,
however, at the cost of doubling the weight.

Based on this study, it is believed that the perceived advantage of the double shell mu%er
over the single shell counterpart stems not from the better sound isolation characteristics
but from the increased damping e!ect of the double shell.



Figure 10. ¹¸s of the single shell (R"0)1 m, h"1)0 mm) and double (R
�
:R

�
"0)1 m, h

�
"h

�
"1)0 mm):

- - - - -, single shell; **, double shell.

Figure 11. ¹¸s of the double shell (R
�
:R

�
"0)1 m) with respect to thickness combination: - - - - -, double shell

(h
�
"1)0 mm, h

�
"1)0 mm); **, double shell (h

�
"0)6 mm, h

�
"0)4 mm).
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4.3. EFFECT OF THICKNESS

Figure 11 compares the ¹¸s calculated by the bending wave model for the shell
composed of two 1 mm walls and the shell composed of 0)4 and 0)6 mm walls. It is known
that the e!ect of the thickness increase is over a broad range of the frequency.

4.4. EFFECT OF THE AIR-GAP

Figure 12 compares the transmission losses calculated from the bending model for the
double shells of di!erent air-gap sizes. Sound transmission through the double shells of 0)6
and 0)4 mm with three air-gap sizes of 0)01, 1 and 10 mm are considered. The "gure shows



Figure 12. E!ect of air-gap in ¹¸s of the double shell (R
�
:R

�
"0)1 m, h

�
"0)6 mm, h

�
"0)4 mm): **,

t
�
"0)01 mm; - - - - - -, t

�
"1)0 mm; } ) } ) } ) , t

�
"10 mm.
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that the transmission loss can be increased quite signi"cantly by enlarging the air-gap size,
which is not a possible option for mu%ers.

The "rst two dips in the ¹¸ curves in Figure 12 are noteworthy. It is believed that the "rst
dip at around 100 Hz is caused by the lowest overall system natural frequency. The second
dip observed at around 770 Hz in Figure 12 corresponds to the "rst ring frequency of the
annular air-gap. This frequency can be estimated as

f
������

"

(c
������

/cos(�
�
))

2�R
�

"

c
�����������
2�R

�

, (56)

where c
������

is the sound speed in the cavity, �
�
is the incidence angle, R

�
is the radius of the

shell and c
�����������

stands for the phase speed in the circumferential direction. The
frequency is calculated to be approximately 770 Hz at the mu%er operating condition.

5. CONCLUSION

An exact solution procedure is developed to study the sound transmission through
a double-walled cylindrical shell. The solutions obtained from two models, the "rst of which
describes the sound transmission caused by the bending waves travelling in the shell and the
second describes the sound transmission by the plane waves travelling across the layers of
two shells and the air-gap. For the bending wave solution, three acoustic wave equations
and two shell vibration equations are solved simultaneously, which provides a series
solution. This is considered to be the "rst exact solution to this type of a problem obtained
using the full shell vibration equations. To solve the plane wave model, the four-pole
method is used. Both solutions are represented in terms of the transmission loss (¹¸), which
are then combined into a single ¹¸ curve. Also, the idea of combining the solutions is used
for the "rst time in this work. The analytical solutions obtained are compared with the
measured ¹¸s, which show reasonable agreement. The e!ects of important design
parameters such as the air-gap size and the thickness ratio are also studied using the
analytical solutions.
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